Part Number Hot Search : 
22142 X232N 855094 02016 G2005 74LVC1G TC5032 ADC10
Product Description
Full Text Search
 

To Download TSH81IYPT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TSH80-TSH81-TSH82
Wide band rail-to-rail operational amplifier with standby function
Features

Operating range from 4.5V to 12V 3dB-bandwidth: 100MHz Slew-rate 100V/s Output current up to 55mA Input single supply voltage Output rail-to-rail Specified for 150 load Low distortion, THD 0.1% SOT23-5, TSSOP and SO packages Pin connections TSH80/SO-8
NC 1 Inv. input 2 3 VCC- 4 _ + 8 NC 7 VCC+ 6 Output 5 NC
SOT23-5
SO-8
TSSOP8
Pin connections TSH80/SOT23-5
Output 1 VCC- 2 Non-inv. input 3 5 VCC+
+4 Inv. input
Applications

Video buffers A/D converters driver Hi-fi applications
Description
The TSH8x series offers single and dual operational amplifiers featuring high video performance with large bandwidth, low distortion and excellent supply voltage rejection. These amplifiers also feature large output voltage swing and high output current capability to drive standard 150 loads. Running at single or dual supply voltage from 4.5V to 12V, these amplifiers are tested at 5V (2.5V) and 10V (5V) supplies. The TSH81 also features a standby mode, which allows the operational amplifier to be put into a standby mode with low power consumption and high output impedance. This function allows power saving or signal switching/multiplexing for high-speed applications and video applications. For board space and weight saving, the TSH8x series is proposed in SOT23-5, TSSOP8 and SO-8 plastic micropackages.
Pin connections TSH81 SO-8/TSSOP8
NC 1 Inverting input 2 Non inverting Input 3 VCC- 4 _ + 8 STANDBY 7 VCC+ 6 Output 5 NC
Pin connections TSH82 SO-8/TSSOP8
Output1 1 Inverting input1 2 Non inv. input1 3 VCC- 4 _ + _ + 8 VCC+ 7 Output2 6 Inverting input2 5 Non inv. input2
October 2007
Rev 4
1/24
www.st.com 24
Contents
TSH80-TSH81-TSH82
Contents
1 2 3 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 3.2 Layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Video capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 5
Precautions on asymmetrical supply operation . . . . . . . . . . . . . . . . . 19 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1 5.2 5.3 SO-8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 TSSOP8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6 7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2/24
TSH80-TSH81-TSH82
Absolute maximum ratings and operating conditions
1
Absolute maximum ratings and operating conditions
Table 1.
Symbol VCC Vid Vi Toper Tstg Tj Supply voltage (1) Differential input voltage Input voltage
(3) (2)
Absolute maximum ratings
Parameter Value 14 2 6 -40 to +85 -65 to +150 150
(4)
Unit V V V C C C
Operating free air temperature range Storage temperature Maximum junction temperature Thermal resistance junction to case SOT23-5 SO8 TSSOPO8
Rthjc
80 28 37 250 157 130 2
C/W
Rthja
Thermal resistance junction to ambient area SOT23-5 SO8 TSSOPO8 Human body model (HBM)
C/W
ESD
kV
1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting terminal. 3. The magnitude of input and output must never exceed VCC +0.3V. 4. Short-circuits can cause excessive heating.
Table 2.
Symbol VCC VIC Standby (pin 8)
Operating conditions
Parameter Supply voltage Common mode input voltage range Threshold on pin 8 for TSH81 VCCValue 4.5 to 12 to (VCC+ -1.1) Unit V V V
(VCC-) to (VCC+)
3/24
Electrical characteristics
TSH80-TSH81-TSH82
2
Table 3.
Symbol |Vio| Vio Iio Iib Cin ICC
Electrical characteristics
VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25C (unless otherwise specified)
Parameter Input offset voltage Input offset voltage drift vs. temperature Input offset current Input bias current Input capacitance Supply current per operator Tamb= 25C Tmin < Tamb < Tmax +0.13 0.1 6 0.3 8.2
CMR
Common mode rejection ratio (Vic/Vio) Supply voltage rejection ratio (VCC/Vio) Power supply rejection ratio (VCC/Vout)
97 75
dB
SVR PSR
dB dB
75
Avd
Large signal voltage gain
75 70 35 28 33 28 4.2
84
dB
|Source| Io Sink
55
mA
55
Voh
High level output voltage
4.5
4.36 4.85 4.90 4.93 4.66 4.90 4.92 4.93
V
4.1 4.4
4/24
TSH80-TSH81-TSH82 Table 3.
Symbol
Electrical characteristics
VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25C (unless otherwise specified)
Parameter Test conditions Tamb= 25C RL = 150 connected to GND RL = 600 connected to GND RL = 2k connected to GND RL = 10k connectedto GND RL = 150 connected to 2.5V RL = 600 connected to 2.5V RL = 2k connected to 2.5V RL = 10k connected to 2.5V Tmin < Tamb < Tmax RL = 150 connected to GND RL = 150 connected to 2.5V F=10MHz AVCL= +11 AVCL= -10 AVCL= +1 RL= 150 connected to 2.5V AVCL=+2 RL=150 // CL to 2.5V CL = 5pF CL = 30pF RL= 150 // 30pF to 2.5V F= 100kHz AVCL= +2, F= 4MHz RL= 150 // 30pF to 2.5V Vout= 1Vpp Vout= 2Vpp AVCL= +2, Vout= 2Vpp RL= 150 connected to 2.5V Fin1= 180kHz, Fin2= 280kHz spurious measurement @100kHz AVCL= +2, Vout= 2Vpp RL= 150 to 2.5V Fin1=180kHz, Fin2= 280kHz spurious measurement @400kHz AVCL=+2, RL=150 to 2.5V F= 4.5MHz, Vout= 2Vpp AVCL= +2, RL=150 to 2.5V F= 4.5MHz, Vout= 2Vpp F= DC to 6MHz, AVCL= +2 F= 1MHz to 10MHz Min. Typ. Max. Unit
Vol
Low level output voltage
48 54 55 56 220 105 76 61
150
400
mV
200 450 65 55 87 MHz
GBP
Gain bandwidth product
Bw
Bandwidth @-3dB
MHz
SR
Slew rate
60
104 105 40 11
V/s
m en
Phase margin Equivalent input noise voltage
(degree) nV/ Hz
THD
Total harmonic distortion
-61 -54
dB
IM2
Second order intermodulation product
-76
dBc
IM3
Third order intermodulation product
-68
dBc
G Df Gf
Differential gain Differential phase Gain flatness
0.5 0.5 0.2 65
% (degree) dB dB
Vo1/Vo2 Channel separation
5/24
Electrical characteristics Table 4.
Symbol |Vio| Vio Iio Iib Cin ICC
TSH80-TSH81-TSH82
VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25C (unless otherwise specified)
Parameter Input offset voltage Input offset voltage drift vs. temperature Input offset current Input bias current Input capacitance Supply current per operator Tamb= 25C Tmin < Tamb < Tmax -4.9 < Vic < 3.9V and Vout=GND Tamb= 25C Tmin < Tamb < Tmax Tamb= 25C Tmin < Tamb < Tmax Positive & negative rail RL=150 connected to GND Vout= -4 to +4 Tamb= 25C Tmin < Tamb < Tmax Vid=+1, Vout connected to 1.5V Tamb= 25C Tmin < Tamb < Tmax Vid=-1, Vout connected to 1.5V Tamb= 25C Tmin < Tamb < Tmax Tamb= 25C RL = 150 connected to GND RL = 600 connected to GND RL = 2k connected to GND RL = 10k connected to GND Tmin < Tamb < Tmax RL = 150 connected to GND Tamb= 25C RL = 150 connected to GND RL = 600 connected to GND RL = 2k connected to GND RL = 10k connected to GND Tmin < Tamb < Tmax RL = 150 connected to GND 81 72 71 65 Test conditions Tamb= 25C Tmin < Tamb < Tmax Tmin < Tamb < Tmax Tamb= 25C Tmin < Tamb < Tmax Tamb= 25C Tmin < Tamb < Tmax Min. Typ. 0.8 Max. 10 12 Unit mV V/C 3.5 5 15 20 A A pF 12.3 13.4 mA
2 0.1 6 0.7 9.8
CMR
Common mode rejection ratio (Vic/Vio) Supply voltage rejection ratio (VCC/Vio) Power supply rejection ratio (VCC/Vout)
106 77
dB
SVR PSR
dB dB
75
Avd
Large signal voltage gain
75 70 35 28 30 28 4.2
86
dB
|Source| Io Sink
55
mA
55
Voh
High level output voltage
4.36 4.85 4.9 4.93
V
4.1 -4.63 -4.86 -4.9 -4.93 -4.4 mV
Vol
Low level output voltage
-4.3
6/24
TSH80-TSH81-TSH82 Table 4.
Symbol
Electrical characteristics
VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25C (unless otherwise specified)
Parameter Test conditions F=10MHz AVCL= +11 AVCL= -10 AVCL= +1 RL=150 // 30pF to GND AVCL=+2 RL=150 // CL to GND CL = 5pF CL = 30pF RL= 150 connected to GND F= 100kHz AVCL= +2, F=4 MHz RL=150 // 30pF to GND Vout= 1Vpp Vout= 2Vpp AVCL= +2, Vout= 2Vpp RL= 150 to GND Fin1= 180kHz, Fin2= 280kHz spurious measurement @100kHz AVCL= +2, Vout= 2Vpp RL=150 to GND Fin1= 180kHz, Fin2= 280kHz spurious measurement @400kHz AVCL=+2, RL=150 to GND F= 4.5MHz, Vout= 2Vpp AVCL= +2, RL= 150 to GND F= 4.5MHz, Vout= 2Vpp F=DC to 6MHz, AVCL=+2 F=1MHz to 10MHz Min. Typ. Max. Unit
GBP
Gain bandwidth product
65 55 100
MHz
Bw
Bandwidth @-3dB
MHz
SR
Slew rate
68
117 118 40 11
V/s
m en
Phase margin Equivalent input noise voltage
(degree) nV/ Hz
THD
Total harmonic distortion
-61 -54
dB
IM2
Second order intermodulation product
-76
dBc
IM3
Third order intermodulation product
-68
dBc
G Df Gf Vo1/Vo2
Differential gain Differential phase Gain flatness Channel separation
0.5 0.5 0.2 65
% (degree) dB dB
7/24
Electrical characteristics Table 5.
Symbol Vlow Vhigh ICC-STBY Zout Ton Toff
TSH80-TSH81-TSH82
Standby mode - VCC+, VCC-, Tamb = 25C (unless otherwise specified)
Parameter Standby low level Standby high level Current consumption per pin 8 (TSH81) to VCCoperator when Standby is active Output impedance (Rout//Cout) Time from Standby mode to Active mode Time from Active mode to Standby mode Down to ICC-STBY = 10A Rout Cout Test conditions Min. VCC(VCC +2) 20 10 17 2 10
-
Typ.
Max. (VCC- +0.8) (VCC ) 55
+
Unit V V A M pF s s
Table 6.
TSH81 standby control pin status
Operator status Standby Active
TSH81 standby control pin 8 (STANDBY) Vlow Vhigh
8/24
TSH80-TSH81-TSH82
Electrical characteristics
Figure 1.
Closed loop gain and phase vs. frequency
Figure 2.
Overshoot vs. output capacitance
Gain=+2, VCC= 2.5V, RL=150 Tamb = 25C ,
10 200
Gain=+2, VCC= 2.5V, Tamb = 25C
10
5
150//33pF
Gain
100
5
150//22pF
Gain (dB)
Phase ()
0 -5
Gain (dB)
0
150//10pF
150
0
Phase
-100
-10
-15 1E+4
-200 1E+5 1E+6 1E+7 1E+8 1E+9
-5 1E+6
1E+7
1E+8
1E+9
Frequency (Hz)
Frequency (Hz)
Figure 3.
Closed loop gain and phase vs. frequency
200
Figure 4.
Closed loop gain and phase vs. frequency
Gain=-10, VCC= 2.5V, RL=150 Tamb = 25C ,
30
Gain=+11, VCC= 2.5V, RL=150 Tamb = 25C ,
30 0
Phase
20
150
Phase
20
100
Gain (dB)
Phase ()
Gain
10 50
Gain (dB)
10
0 0 -50
-100 0
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-100 1E+9
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-150 1E+9
Frequency (Hz)
Frequency (Hz)
Figure 5.
Large signal measurement positive slew rate
Figure 6.
Large signal measurement negative slew rate
Gain=2, VCC=2.5V, ZL=150//5.6pF, Vin=400mVpk
3
Gain=2, VCC=2.5V, ZL=150//5.6pF, Vin=400mVpk
3
2
2
1
1
Vout (V)
0
Vout (V)
0
-1
-1
-2
-2
-3 0 10 20 30 40 50 60 70 80
-3 0 10 20 30 40 50 60 70
Time (ns)
Time (ns)
Phase ()
Gain
-50
9/24
Electrical characteristics
TSH80-TSH81-TSH82
Figure 7.
Small signal measurement - rise time
Figure 8.
Small signal measurement - fall time
Gain=2, VCC=2.5V, RL=150 Vin=400mVpk ,
0.06
Gain=2, VCC=2.5V, RL=150 Vin=400mVpk ,
0.06
0.04
0.04
0.02
0.02
Vin, Vout (V)
Vin Vout (V)
Vout Vin
0
0
Vout Vin
-0.02
-0.02
-0.04
-0.04
-0.06 0 10 20 30 40 50 60
-0.06 0 10 20 30 40 50 60
Time (ns)
Time (ns)
Figure 9.
Channel separation (crosstalk) vs. frequency
VIN
49.9
Measurement configuration: crosstalk=20log(V0/V1)
Figure 10. Channel separation (crosstalk) vs. frequency Gain=+11, VCC=2.5V, ZL=150//27pF
-20 -30
+ + 150
V1
Xtalk (dB)
-40
4/1output
-50
100 1k
3/1output
-60 -70 -80
2/1output
+ 49.9 100 1k 150
-90
VO
-100 -110 1E+4
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 11. Equivalent input noise voltage
Gain=100, VCC=2.5V, no load
30
+ _
10k 100
Figure 12. Maximum output swing
Gain=11, VCC=2.5V, RL=150
3
25
2
Vout
Vin, Vout (V)
1
en (nV/Hz)
20
Vin
0
15
-1
10
-2
5 0.1 1 10 100 1000
-3 0.0E+0
5.0E-2
1.0E-1
1.5E-1
2.0E-1
Frequency (kHz)
Time (ms)
10/24
TSH80-TSH81-TSH82
Electrical characteristics Figure 14. Third order intermodulation(1)
Gain=2, VCC= 2.5V, ZL=150//27pF, Tamb = 25C
0
Figure 13. Standby mode - Ton, Toff
VCC= 2.5V, open loop
3 2 1 0 -1 -2 -3 0
Vin
-10 -20 -30
Vin, Vout (V)
IM3 (dBc)
-40 -50
740kHz 80kHz
Vout
-60 -70 -80
Ton
2E-6
Standby
4E-6 6E-6
-90
Toff
-100
8E-6 1E-5
380kHz
0 1
640kHz
2 3 4
Time (s)
Vout peak(V)
1. The IFR2026 synthesizer generates a two-tone signal (F1=180kHz, F2=280kHz), each tone having the same amplitude. The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The generator and the spectrum analyzer are phase locked for better accuracy.
Figure 15. Group delay
Gain=2, VCC= 2.5V, ZL=150//27pF, Tamb = 25C
Gain
Group Delay 5.32ns
11/24
Electrical characteristics
TSH80-TSH81-TSH82
Figure 16. Closed loop gain and phase vs. frequency
Gain=+2, VCC= 5V, RL=150 Tamb = 25C ,
10 200
Figure 17. Overshoot vs. output capacitance
Gain=+2, VCC= 5V, Tamb = 25C
10
5
150//33pF
Gain
100
5
150//22pF
Gain (dB)
Phase ()
0 -5
Gain (dB)
0
150//10pF
150
0
Phase
-100 -10
-15 1E+4
1E+5
1E+6
1E+7
1E+8
-200 1E+9
-5 1E+6
1E+7
1E+8
1E+9
Frequency (Hz)
Frequency (Hz)
Figure 18. Closed loop gain and phase vs. frequency
Gain=-10, VCC= 5V, RL=150 Tamb = 25C ,
30 200
Figure 19. Closed loop gain and phase vs. frequency
Gain=+11, VCC= 5V, RL=150 Tamb = 25C ,
30 0
Phase
150 20 100
20
Phase
Gain (dB)
Phase ()
Gain (dB)
Gain
10
10
50
-100
0 0
0
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-50 1E+9
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-150 1E+9
Frequency (Hz)
Frequency (Hz)
Figure 20. Large signal measurement positive slew rate
Gain=2, VCC=5V, ZL=150//5.6pF, Vin=400mVpk
5 4 3 2
Figure 21. Large signal measurement negative slew rate
Gain=2, VCC=5V, ZL=150//5.6pF, Vin=400mVpk
5 4 3 2
Vout (V)
0 -1 -2 -3 -4 -5 0 20 40 60 80 100
Vout (V)
1
1 0 -1 -2 -3 -4 -5 0 20 40 60 80 100
Time (ns)
Time (ns)
12/24
Phase ()
Gain
-50
TSH80-TSH81-TSH82
Electrical characteristics
Figure 22. Small signal measurement - rise time
Gain=2, VCC=5V, RL=150 Vin=400mVpk ,
0.06
Figure 23. Small signal measurement - fall time
Gain=2, VCC=5V, RL=150 Vin=400mVpk ,
0.06
0.04
0.04
0.02
Vin, Vout (V)
0.02
0
Vin, Vout (V)
Vout
0
Vout Vin
-0.02
Vin
-0.02
-0.04
-0.04
-0.06 0 10 20 30 40 50 60
-0.06 0 10 20 30 40 50 60
Time (ns)
Time (ns)
Figure 24. Channel separation (crosstalk) vs. frequency
Measurement configuration: crosstalk=20log(V0/V1)
VIN
49.9
Figure 25. Channel separation (crosstalk) vs. frequency
Gain=+11, VCC=5V, ZL=150/ /27pF
-20 -30
+ + 150
V1
Xtalk (dB)
-40 -50
4/1output 3/1output
100 1k
-60 -70 -80
2/1output
+ 49.9 100 1k 150
-90
VO
-100 -110 1E+4
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 26. Equivalent input noise voltage
Gain=100, VCC=5V, no load
30
Figure 27. Maximum output swing
Gain=11, VCC=5V, RL=150
5 4
25
+ _
10k
3 2
Vout
Vin, Vout (V)
100
en (nV/Hz)
20
1 0 -1 -2
Vin
15
10
-3 -4
5 0.1 1 10 100 1000
-5 0.0E+0
5.0E-2
1.0E-1
1.5E-1
2.0E-1
Frequency (kHz)
Time (ms)
13/24
Electrical characteristics
TSH80-TSH81-TSH82 Figure 29. Third order intermodulation(1)
Gain=2, VCC= 5V, ZL=150/ /27pF, Tamb = 25C
0
Figure 28. Standby mode - Ton, Toff
VCC= 5V, open loop
Vin
5
-10 -20 -30
Vin, Vout (V)
Vout
0
IM3 (dBc)
-40 -50 -60 -70 -80
80kHz 740kHz
-5
Ton
0 2E-6
Standby
4E-6 6E-6
-90
Toff
8E-6
640kHz
-100 0 1 2 3
380kHz
4
Time (s)
Vout peak(V)
1. The IFR2026 synthesizer generates a two-tone signal (F1=180kHz, F2=280kHz), each tone having the same amplitude. The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The generator and the spectrum analyzer are phase locked for better accuracy.
Figure 30. Group delay
Gain=2, VCC= 5V, ZL=150//27pF, Tamb = 25C
Gain
Group Delay 5.1ns
14/24
TSH80-TSH81-TSH82
Test conditions
3
3.1
Test conditions
Layout precautions
To use the TSH8X circuits in the best manner at high frequencies, some precautions have to be taken for power supplies:
In high-speed circuit applications, the implementation of a proper ground plane on both sides of the PCB is mandatory to ensure low inductance and low resistance common return. Power supply bypass capacitors (4.7F and ceramic 100pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and the positive pins. All inputs and outputs must be properly terminated with output resistors; thus, the amplifier load is resistive only and the stability of the amplifier will be improved. All leads must be wide and as short as possible especially for op-amp inputs and outputs in order to decrease parasitic capacitance and inductance.

In lower gain applications, use a low feedback resistance (under 1k) to reduce the time constant with parasitic capacitance. Choose component sizes as small as possible (SMD). On the output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance as close as possible to the output pin to minimize the effect of the load capacitance.
Figure 31. CCIR330 video line
15/24
Test conditions
TSH80-TSH81-TSH82
3.2
Video capabilities
To characterize the differential phase and differential gain a CCIR330 video line is used. The video line contains 5 (flat) levels of luminance onto which the chrominance signal is superimposed. The luminance gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the color of the signal. Differential phase (or differential gain) distortion is present if a signal chrominance phase (gain) is affected by luminance level. Differential phase and gain represent the ability to uniformly process the high frequency information at all luminance levels. When differential gain is present, color saturation is not correctly reproduced. The input generator is the Rhode & Schwarz CCVS. The output measurement is done by the Rhode and Schwarz VSA. Figure 32. Measurement on Rhode and Schwarz VSA
16/24
TSH80-TSH81-TSH82 Table 7. Video results
Value (VCC=2.5V)
Test conditions
Parameter
Value (VCC=5V)
Unit
Lum NL Lum NL Step 1 Lum NL Step 2 Lum NL Step 3 Lum NL Step 4 Lum NL Step 5 Diff Gain pos Diff Gain neg Diff Gain pp Diff Gain Step1 Diff Gain Step2 Diff Gain Step3 Diff Gain Step4 Diff Gain Step5 Diff Phase pos Diff Phase neg Diff Phase pp Diff Phase Step1 Diff Phase Step2 Diff Phase Step3 Diff Phase Step4 Diff Phase Step5
0.1 100 100 99.9 99.9 99.9 0 -0.7 0.7 -0.5 -0.7 -0.3 -0.1 -0.4 0 -0.2 0.2 -0.2 -0.1 -0.1 0 -0.2
0.3 100 99.9 99.8 99.9 99.7 0 -0.6 0.6 -0.3 -0.6 -0.5 -0.3 -0.5 0.1 -0.4 0.5 -0.4 -0.4 -0.3 0.1 -0.1
% % % % % % % % % % % % % % degree degree degree degree degree degree degree degree
17/24
Precautions on asymmetrical supply operation
TSH80-TSH81-TSH82
4
Precautions on asymmetrical supply operation
The TSH8x can be used either with a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+VCC/2). This bias network must be carefully designed, in order to reject any noise present on the supply rail. As the bias current is 15A, you should use a high resistance R1 (approximately 10k) to avoid introducing an offset mismatch at the amplifier inputs. Figure 33. Asymmetrical supply schematic diagram
IN Cin + R1 R2 R3 C1 Vcc+ C3 C2 R4 -
Cout OUT
R5
Cf
RL
C1, C2, C3 are bypass capacitors intended to filter perturbation from VCC. The following capacitor values are appropriate: C1=100nF and C2=C3=100F R2 and R3 are such that the current through them must be superior to 100 times the bias current. Therefore, you could use the following resistance values: R2=R3=4.7k Cin and Cout are chosen to filter the DC signal by the low pass filters (R1, Cin) and (Rout, Cout). With R1=10k, Rout=RL=150, and Cin=2F, Cout=220F the cutoff frequency obtained is lower than 10Hz. Figure 34. Use of the TSH8x in gain = -1 configuration
Cf 1k IN Cin 1k Vcc+ R2 R3 C1 C2 C3
+
Cout OUT RL
R1
18/24
TSH80-TSH81-TSH82
Package information
5
Package information
In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK(R) packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com.
19/24
Package information
TSH80-TSH81-TSH82
5.1
SO-8 package mechanical data
Dimensions Ref. Min. Millimeters Typ. Max. Min. Inches Typ. Max.
A A1 A2 b c D H E1 e h L k ccc 0.25 0.40 1 0.10 1.25 0.28 0.17 4.80 5.80 3.80 4.90 6.00 3.90 1.27
1.75 0.25 0.004 0.049 0.48 0.23 5.00 6.20 4.00 0.011 0.007 0.189 0.228 0.150 0.193 0.236 0.154 0.050 0.50 1.27 8 0.10 0.010 0.016 1
0.069 0.010
0.019 0.010 0.197 0.244 0.157
0.020 0.050 8 0.004
20/24
TSH80-TSH81-TSH82
Package information
5.2
TSSOP8 package mechanical data
Dimensions Ref. Min. Millimeters Typ. Max. Min. Inches Typ. Max.
A A1 A2 b c D E E1 e k L L1 aaa 0 0.45 0.60 1 0.1 0.05 0.80 0.19 0.09 2.90 6.20 4.30 3.00 6.40 4.40 0.65 1.00
1.2 0.15 1.05 0.30 0.20 3.10 6.60 4.50 0.002 0.031 0.007 0.004 0.114 0.244 0.169 0.118 0.252 0.173 0.0256 8 0.75 0 0.018 0.024 0.039 0.004 0.039
0.047 0.006 0.041 0.012 0.008 0.122 0.260 0.177
8 0.030
21/24
Package information
TSH80-TSH81-TSH82
5.3
SOT23-5 package mechanical data
Dimensions Ref. Min. Millimeters Typ. Max. Min. Mils Typ. Max.
A A1 A2 b C D E E1 e e1 L
0.90 0.00 0.90 0.35 0.09 2.80 2.60 1.50 0.95 1.9 0.35
1.45 0.15 1.30 0.50 0.20 3.00 3.00 1.75
35.4 0.00 35.4 13.7 3.5 110.2 102.3 59.0 37.4 74.8
57.1 5.9 51.2 19.7 7.8 118.1 118.1 68.8
0.55
13.7
21.6
22/24
TSH80-TSH81-TSH82
Ordering information
6
Ordering information
Table 8.
Type
Order codes
Temperature range Package Packaging Marking
TSH80ILT TSH80IYLT(1) TSH80ID/DT TSH80IYD/IYDT(1) TSH81ID/DT TSH81IPT TSH81IYPT(1) TSH82ID/DT TSH82IPT TSH82IYD/IYDT(1) -40C to +85C
SOT23-5 SOT23-5 (Automotive grade level) SO-8 SO-8 (Automotive grade level) SO-8 TSSOP8 TSSOP8 (Automotive grade level) SO-8 TSSOP8 SO-8 (Automotive grade level) Tape & reel Tube or tape & reel Tape & reel
K303 K310 TSH80I SH80IY TSH81I SH81I H81IY Tube or tape & reel Tape & reel Tube or tape & reel TSH82I SH82I SH82IY
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.
7
Revision history
Date Revision Changes
1-Feb-2003 2-Aug-2005 12-Apr-2007 24-Oct-2007
1 2 3 4
First release. PPAP references inserted in the datasheet, see Table 8: Order codes on page 23. Corrected temperature range for TSH80IYD/IYDT and TSH82IYD/IYDT order codes in Table 8: Order codes on page 23. TSH81IYPT PPAP references inserted in the datasheet, see Table 8: Order codes on page 23.
23/24
TSH80-TSH81-TSH82
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
24/24


▲Up To Search▲   

 
Price & Availability of TSH81IYPT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X